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ABSTRACT
Software Defined Networking (SDN) has been developed
rapidly and is now used by early adopters such as data cen-
tres. It offers immediate capital cost savings by replacing
proprietary routers with commodity switches and controllers;
the use of computer science abstractions in network manage-
ment offers operational cost savings, with performance and
functionality improvements too. However, there is a third
class of benefits, that will come into their own once SDN is
deployed in less controlled environments: and that is secu-
rity. Traditional network architectures have many points of
serious failure; the compromise of a single router can lead to
significant attacks. SDN enables network designers to limit
the damage that compromised switches can do, and thus can
support more resilient and survivable networks in environ-
ments where opponents may have access to some of the in-
frastructure. In this paper we discuss the security aspects of
SDN, and the possible opportunities that result.

1. INTRODUCTION
One question facing advocates of software defined net-

working is: what can it do that we cannot already do with
existing technology? The move from proprietary router tech-
nologies to commodity switches and controllers holds out
the promise of significant cost savings, and has led to SDN
deployment in data centres where these cost savings are suf-
ficient to compensate for the added engineering effort and
technology risk. In the medium term, the programmabil-
ity of the controllers opens up the prospect of much better
network management, as we move from large scripts and
proprietary command lines to proper computer science ab-
stractions.

In this position paper, we argue that there is a further sig-
nificant opportunity, in that SDN networks could be secured
much better, particularly against attacks resulting from lo-
cal compromise of switches. This will become increasingly
more important as networks get larger and serve more het-
erogeneous tenants.

Consider the following possible deployment scenarios:

1. a data centre with 100,000 machines, connected via
commodity switches and a hierarchy of top-of-rack,

end-of-rack and facility-wide controllers;

2. a large tier-1 transit provider with many hundreds of
Points of Presence (PoPs) in 100 countries;

3. a system services company that provides private net-
works to 100 banks spread across 500 buildings mostly
in New York, London, Frankfurt, Tokyo and Hong Kong;

4. a large international airport with 50,000,000 passen-
gers a year, served by 100,000 staff who work for 1,000
organisations. These include not just government agen-
cies dealing with crime, immigration and intelligence,
but hundreds of airlines and freight companies directly
competing with each other.

The first of these is the typical early adopter scenario, and
the next three are likely future adopters over the next 5–10
years as the technology matures. Going down the list, two
things happen: the technological sophistication (in terms of
the number of PhD-level network engineers employed) de-
creases, and the level of physical control over network hard-
ware decreases. Large ASes have a lot of equipment on
premises they control, but inevitably have routers at far-flung
points of presence. Large heterogeneous commercial net-
works may also have customers that are vigorous competi-
tors of each other; in the case of our airport example, they
may even include carriers from nations in conflict, such as
El Al and Iran Air. There may thus be value in not just pro-
tecting the network from misbehaviour by customers, but in
protecting customers from each other.

The definition of ‘protection’ may be subtle. Customers
can protect the confidentiality and integrity of their data us-
ing encryption, whether using VPNs or higher-layer mecha-
nisms; the aspect of protection that falls to the network ser-
vice provider is mainly resilience against denial-of-service
(whether deliberate or inadvertent) though there may be some
additional requirements in areas such as finance; Chinese-
wall regulations may require a bank to separate different ac-
tivities, while divisions involved in trading may want latency
guarantees.

2. INFRASTRUCTURE SECURITY
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The threat model for hardware and physical security is
thus changing: growing scale makes physical attacks impos-
sible to prevent completely. Janitors in a large airport can ac-
cess many switch closets, shared facilities see many tenants
having access to others’ racks, and state actors can access
devices in many countries.

Our threat model must assume physical compromise of
devices, along with associated attacks that can be done by
having physical access. We assume that some devices (the
ones ‘in the field’) are unsafe. Once an attacker gains phys-
ical access to a device, he can open, modify, remove, or re-
place it. It is reasonable to say a number of switches are
compromised at a given time, and sometimes controllers at
the bottom of the hierarchy are compromised too (since they
are deployed near switches). We also assume the communi-
cation channels connecting an unsecured switch to be inse-
cure: just like the devices, the wires are also subjected to the
same attacks. If an attacker can get access to a device, he
also has access to its cabling.

Imagine an ISP needing to change a switch at a customer’s
site by ordering the equipment from a contractor. There is
no guarantee of security at any of the steps from factory
and shipping company to contractors and subcontractors and
eventually to the customer. Even the customer may modify
the equipment if there is incentive to do so. It is not just a
matter of occasional access by secret policemen at points of
presence in less well-governed countries.

In a time of conflict, the opportunity would exist for an
opponent who had taken over one of the routers to use it to
cause general havoc, by inserting false rules, or removing
and replacing legitimate ones, and thus generally disrupting
the switching fabric. If your network has 1,000 routers, and
any one of them can disrupt it, as is the case today, then if
only a few percent of your routers are compromised, you are
vulnerable.

2.1 The opportunity
Our basic position in this paper is that the move from peer

routers and switches, any of which can cause equal havoc
if compromised, to a two-tier system of switches and con-
trollers, gives a welcome opportunity to arrange things so
that the compromise of a handful of switches will do no more
than local damage. The controllers, where the intelligence
resides, can mostly be moved out of harm’s way into more
protected environments. This enables us to protect the in-
frastructure better. What’s more, programmable controllers
mean opportunities for further and stronger separation via
virtualisation, and the prospect of installing much more so-
phisticated security applications such as filtering, firewall
and botnet countermeasures. This enables us to provide bet-
ter protection functionality.

As for the infrastructure, a classical network-setup adapted
to SDN, as illustrated in Figure 1 and currently deployed in
data centres, might have a bottom layer of 1,000 switches,
with each ten switches driven by a level 2 controller, every

ten level 2 controllers driven by a level 1 device, and the
ten level 1 devices coordinated by a master controller. Thus
if we can arrange things so that only controllers can cause
widespread outages if compromised, the number of critical
components is reduced by a factor of ten. If we can further
arrange things so that the compromise of a level 2 controller
does little damage outside of its immediate neighbourhood,
then we have reduced the number of points of serious failure
by another order of magnitude.

Although Figure 1 illustrates an SDN hierarchy informed
by datacenter practices, without much imagination it is plau-
sible to map the components to those of an ISP (Network
Operation Centre, Regional Offices, PoPs, etc.) and to the
components of our airport example (where there are some
central facilities, some in separate buildings and some on
different floors of those buildings, connected in a hierarchy).

3. SOFTWARE SECURITY
Software plays a major role in an SDN, as the name im-

plies. SDN, with its abstractions, enable operators to bet-
ter manage their software and its security. However, pro-
grammability creates temptation, and complexity expands to
fill the available space. Dependability will emerge from a
number of factors including architecture, incentives and as-
surance.

3.1 Likely architecture
A typical SDN will have two or more layers of ‘middle

management’ controllers between its root controller and the
switch fabric. This is where the ‘work’ will be done, of cre-
ating virtual networks and supporting virtual services. For
example, a new bank in example (3), or a new airline in ex-
ample (4) above, will go to an infrastructure network man-
ager and request a private network with a particular set of
features; if approved, the manager will issue the necessary
rules which will cascade down through controllers at levels
0, 1 and 2. The actual virtualisation will happen in the mid-
dle layers, at layers 1 and 2, with level-2 controllers issuing
the necessary rules to the switches they control.

We assume the level 0 and level 1 controllers to be trusted,
although with potential accidental configuration errors; and
that there may be occasional compromises at level 2. How-
ever, there may be network application code (the SD appli-
cations) running on level 1 and level 2 controllers, which
might misbehave, intentionally or not. As we noted, some
proportion of the switches may be compromised at any one
time; and, as the data packets being dealt with can come
from anywhere, nothing is assumed of them.

We imagine that in time there will be many SDN appli-
cations that operators can choose to deploy. This will bring
the same problems seen with application markets for mo-
bile phones. Will we take the ‘walled garden’ approach of
the iPhone, with some central authority that vets applica-
tions and developers, or the somewhat more freewheeling
approach of Android, where all can play but applications are
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Figure 1: An SDN setup with hierarchical controllers and switches. Solid lines denote connections, and dotted lines
backup connections. Note that the PKI, management, and monitoring services are conceptually drawn, and may not be
physically separate from the main hierarchy.

removed from the play store once they are considered harm-
ful? Many applications will contain too much code to ver-
ify, and even if their developers are honest and competent,
they may still face commercial incentives to collect as much
information as possible, or to give higher priority to their
own traffic at the expense of their competitors’. Network
engineers deciding how much access to grant an app may
be more sophisticated than the typical Android user trying
to decide whether a social networking app that asks for the
ability to send text messages is exploitative — but the diffi-
culties encountered with the manifests for phone apps bear
careful thought. How should we design the set of permis-
sions that will define and constrain the behaviour of an SDN
app? How should the access control policies look like?

We believe this is an area that needs substantial and urgent
research.

3.2 The OODA loop

The OODA loop (for Observe, Orient, Decide, and Act)
was developed by air force analyst Colonel John Boyd to
understand the factors leading to success and failure in com-
bat. It has since been applied to information security man-
agement [1] and is a useful way of thinking about the man-
agement of software attacks. First we have to observe that a
system is not behaving as it ought to, and in the case of a net-
work that means having robust network monitoring mecha-
nisms that are difficult for an attacker to subvert. We concep-
tualise these as a separate system, alongside the SDN core
hierarchy, and reporting to the the top-level controllers and
management servers, since that is where policies are speci-
fied.

The network monitoring mechanism may involve sam-
pling a proportion of packets and verifying that the rules set
by controllers at different levels are being complied with.
This is another area in which significant research is needed;
just as we need to translate a routing rule at level 0 or level
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1 into forwarding rules that are passed by level 2 controllers
to switches, so too do we need to translate such rules into
sampling instructions to verify compliance for the packet
streams. Other possible ways to enforce rules include us-
ing formal methods, conflict resolution, and proof of rule
instalment.

A further problem with monitoring is that if there are vir-
tual networks at different security levels — say for example
an unclassified network in an airport used by a foreign air-
line, and a CONFIDENTIAL network used by the immigra-
tion service — then we do not want the management node
of the first network to get packet monitoring data for the sec-
ond. So the monitoring system has to provide strong separa-
tion of data on different virtual networks, if it is to provide
feedback to virtual network managers directly.

The last frontier is the reaction system. Once an attack is
detected, be it the presence of unauthorised software, anoma-
lous flows, or a part of the network being down or parti-
tioned, the SDN needs automatic procedures to recover. This
may involve reconfiguration, rerouting, software reinstalla-
tion and other actions, even prior to the invocation of human
direction.

Mechanisms that can assist in recovery from attack in-
clude a trustworthy core network. We argue that SDN can,
by locating much of the trust in higher-level controllers, limit
the damage that can be done by router compromise. But
these controllers had better be able to talk to each other.
Since the trusted controllers are few in numbers and there-
fore easier to physically protect, an attacker trying to parti-
tion the network will have a hard time to partition the core,
or separate the core from a chunk of the periphery.

Another relevant mechanism is trusted boot. At present,
recovery from attack might involve trusted upgrade of router
firmware followed by rebooting all the devices and waiting
for the network to come up and re-converge. If some routers
are under enemy control and participate maliciously in this
process, they might frustrate it. Again, an advantage of SDN
is that one can bring up the network from the trusted core
outwards; hierarchical reboot should be both faster and less
open to disruption than a traditional spanning-tree approach.

3.3 Network Applications
Currently imagined SDN network security applications

would be a naı̈ve transformation of packet-filtering and fire-
wall rules into network-wide mechanisms. However, while a
natural transformation is possible, and using SDN as a sim-
pler system interface has motivated some to unify once dis-
parate network-control systems [2], SDN opportunities are
more than a unified API to the switching domain.

For example, the abstraction implicit in SDN permits the
network to be considered as a graph not merely the outcome
of routing protocols; this permits a formalism to take hold.
By allowing the SDN to separate the desired outcome from
the implementation specifics; firewall rules, packet-filtering
and access controls can be transformed into explicit permis-

sion control: e.g., explicit routability [3]. The rules may then
permit strongly reasoned properties, thus leading to a net-
work about which correctness (and incorrectness) may also
be reasoned. From a more practical standpoint, such abstrac-
tions allow operators to work with the network as a whole,
rather than going deeper and work with individual switches.
This shift is a good thing.

Collecting the forwarding rules and requests from switches
to a single location also permits an unrealised level of con-
trol. While scalability is not immediately clear, we now have
all of the warranted and unwarranted traffic data within the
network. The potentials of using this for auditing and in-
formation flow analysis is immense. Among others, SDN
makes available an interesting potential for tackling botnet
outbreaks as well as adapting and reacting to other forms of
network attacks [4, 5].

4. PROTOCOL SECURITY
At present, SSL/TLS is optional in OpenFlow but not widely

used or implemented. This is natural enough in the con-
trolled environment of a data centre, but is already unsatis-
factory for a large Autonomous System (AS). The difficul-
ties of key management are already known: keys for SSH
and SSL/TLS are often managed by supplying devices with
key material on USB devices. Things will become more
complex with the coming deployment of BGPSEC [6].

The problem here is to work out what can be reused and
what is different in an SDN setup. Many key-related opera-
tions can be reused with little or no adaptation. The primary
challenge is bootstrapping: how do you bootstrap a key into
a device in an operationally feasible way, particularly when
the hands doing the work are not always trusted? And how
do you bootstrap a network of devices while using the same
devices for network connectivity?

Since multiple protocols are followed by multiple parties,
one possible concern is maintaining consistency of device
identifiers. This is an authentication problem at one level,
but at another it is about maintaining a consistent naming
scheme that operates across multiple protocols. It may make
strategic sense to use a single reliable authentication system
to bootstrap the others.

The design of this may require some care. Consider for
example the ‘power failure’ scenario. Adding devices incre-
mentally may be easy, especially with some human help, but
how do you bring up hundreds or thousands of devices all at
once, if this involves doing authentication with TLS or Ker-
beros? Invoking a human operator is completely infeasible
at this scale; the network needs to do it automatically. So
how is trust established during a network restart, and how
does it converge in a reasonable time? Here too the hier-
archical structure of a typical SDN may give a significant
advantage at large scale.

4.1 Factors to Consider
Key-related operations carry a cost, and we need to con-
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sider how this cost scales for key setup, update, storage, and
revocation. These are not new problems; there was signif-
icant discussion in the late 1990s about the relative cost of
symmetric and asymmetric cryptography. SDN holds out
the prospect of deployments are of sufficient scale for such
considerations to matter.

Another consideration is heterogeneity. Rarely do oper-
ators upgrade the whole network all at once. When SDN
is deployed, operators might start from the edges to ensure
their core network will not be affected if something goes
wrong. If one edge of the network needs to speak SDN to an-
other edge, they will traverse through a traditional network.
How should this communication channel be handled? IPv6
in a primarily IPv4 world has faced with the same problem,
perhaps lessons can be learned from IPv6 deployments.

There are also issues of mating authentication in SDN
with that of DNSSEC, and BGPSEC once it is deployed.
It is very likely that these will co-exist in some way, either
directly leveraging each other or one embedding another.
Cross system authentication issues need to be considered.

5. MANAGEMENT INTERFACE
Finally, the management interface will be critical. Many

of the significant problems with current networks are down
to usability; the management interface we have now is ei-
ther CLI (which are decades old) or a collection of legacy
scripts built and carefully balanced on top of the CLI. Oper-
ators have a high level view of what they want their network
to do, but are then forced to implement that using very low
level kludges. This leads to misconfigurations, route leaks
and worse. Things are made worse by the fact that the prop-
erties/capabilities of each router blade are different, so the
semantics are all over the place and a delicate balance be-
tween what you want the device to do and what it can do (or
be made to do) ‘well enough’ has to be struck -- often by
human beings, who make errors.

In short, the biggest threat for years has been operator er-
ror. We have seen with BGP networks many instances of
routing incidents caused by fat-fingering, where an operator
mistakenly inputs wrong commands into the CLI (Youtube-
Pakistan in 2008, China Telecom in 2010).

SDN can improve this. The goal is to configure the net-
work, not the routers. By having a hierarchy of controllers,
with a management interface at the top, each layer can (in
theory at least) speak the right level of abstraction for that
layer. This is the way to make things more usable, and to
enable networks to scale up. In the operators community
there is a consensus that router command interfaces need im-
provement; one of the underlying causes is vendor lock-in,
as the major vendors have, either for commercial necessity
or product differentiation, made their CLIs subtly different.
SDN can break the lock-in and create the chance to build
more usable network management tools.

SDN can abstract this problem away. OpenFlow, the pro-
tocol to realise SDN with the most momentum, is heading in

the right direction. It specifies a standard set of commands
with which a controller can interact with an OpenFlow-capable
switch. However, the controller-controller and controller-
application interfaces are yet to be defined. And it goes
without saying that any automated configuration system or
command-translation software can have its own bugs and
vulnerabilities. It is also essential to verify the correctness
of the output of such helper software.

6. RELATED WORK
The idea of SDNs regained real traction after the intro-

duction of OpenFlow [7]. Since then, numerous works have
looked at different aspects of OpenFlow and SDN in gen-
eral. There are three directions most relevant to our work:
abstractions, controllers, and monitoring.

On the abstractions front, we have seen language-based
methods used in enforcement of policies, security goals, and
network operations. There is FSL [8] which is a policy lan-
guage that lets operators write policies in a enforceable way.
Another work uses a programming abstraction to define and
isolate network slices [9]. Frenetic is also an ongoing project
that aims to bring an abstraction to network programming,
especially in querying for state, defining policies, and updat-
ing network configurations [10]. In updating network con-
figurations, we have also seen a work that abstracts away po-
tential inconsistencies during a network-wide configuration
update [11].

Controllers have also been a focus point for research. We
have seen FRESCO, a security application development frame-
work to help detect threats and mitigate them in an Open-
Flow application [5]. FortNOX is another work that further
brings security to OpenFlow by extending NOX to enforce
and detect policy contradictions in real time [4]. In each of
these cases the OpenFlow single point of control is central to
the application. In contrast, the number of controllers, how
they scale, and their performance implications are studied
in [12].

There is also some work in monitoring and interactions
with the data plane. We see an effort to dynamically ana-
lyze OpenFlow application code and to identify bugs using
symbolic execution in [13], with an earlier work that applies
model-checking on the state space of the SDN system [14].
VeriFlow sits between controllers and forwarding engines to
check for violations in network-wide invariants, as the rules
are inserted [15]. FlowSense takes a different approach, and
lets switches push network performance numbers upwards
to the controller, in order to monitor and measure the net-
work [16].

7. CONCLUSIONS
Software defined networks are currently seen as a means

of reducing equipment and operating costs, freeing operators
from the limitations of proprietary router architectures, and
providing uniform, simplified and closer control of multiple
platforms.
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In this position paper, we argue that SDNs have another
string to their bow. As networks scale up, it is increasingly
likely that some routers will be under hostile control. With
existing architectures and protocols, this enables them to be
used for extremely disruptive denial-of-service attacks lead-
ing to large scale havoc. SDN offers a more hierarchical ap-
proach to network management in which failures are easier
to spot and more able to be locally contained. The abstrac-
tion that SDN brings allow for conceptually centralised view
of the network both in control and data planes, letting us
continuously monitor the network for unexpected behaviour.
They can also enable tighter management of upgrades and
faster recovery in the event of disruption: accidental or mali-
cious. Realising these benefits will involve some interesting
security research.
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